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Quasiperiodic waves at the onset of zero-Prandtl-number convection with rotation
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We show the possibility of temporally quasiperiodic waves at the onset of thermal convection in a thin
horizontal layer of slowly rotating zero-Prandtl-number Boussinesq fluid confined between stress-free conduct-
ing boundaries. Two independent frequencies emerge due to an interaction between straight rolls and waves
along these rolls in the presence of Coriolis force, if the Taylor number is raised above a critical value.
Constructing a dynamical system for the hydrodynamical problem, the competition between the interacting
instabilities is analyzed. The forward bifurcation from the conductive state is self-tuned.
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[. INTRODUCTION indefinite temporal growth. He considered all possible modes
for the vertical vorticity compatible with stress-free bound-
The study of thermal convection in very low-Prandtl- aries. When the growing amplitude of 2D rolls becomes
number P=v/x<1) fluids has been motivated by theoret- large, wavy perturbations are spontaneously generated.
ical interests in the problems of astrophydits 4], geophys- These perturbations make rolls wavy along their axis. The
ics[5], and turbulencg2,3], as well as its potential industrial exchange of energy between the waves and the straight rolls
applications in the problems of crystal grow#7] and heat |eads to the saturation of convective instability. The instabil-
transport in liquid metal$8,9]. In addition, both experimen- ity is self tuned[15] as they appear when the amplitude of
tal and theoretical investigations of thermal convection ahe straight rolls grows above a large value with all bifurca-
very low P have also contributed to our understanding of theyjg, parameterge.g., Rayleigh numbeR, Taylor numberT,

mechanism of pattern-forming instabilitigF0—-16 in an ex-  \yaye numbers and g) kept fixed. The new bifurcation is
tended dissipative system. The hydrodynamics, in Bouss;,niocaland forward.

inesq approximatiofl7], is governed by two nonlinearities.
The first,v- Vv, describes the self-interaction of the velocity o
field v and the second;- V 6, results from the interaction of

the velocity field and the deviatiod from the conductive oundaries. The svstem shows interesting nonlinear dvnam-
temperature field due to convection. These two nonlinearitieg .y ys Stng y
ics. The linear stability shows that tipeinciple of exchange

are responsible for various instabilities and their saturation. S . . :
At the onset of thermal convection in Boussinesq fluids con®! Stability is valid fo_r_T<277r4/8. The critical Rayleigh
fined between the conducting boundaries the strdigin- ~ NUMberR, and the critical wave numbés, for the oscilla-
dimensional (2D)] rolls appear[17]. The nonlinear term fOry convection are independent of Taylor numfein this
v- Vv does not saturate the temporally growing amplitude ofimit. The nonlinear convection for small rotation rates is
the straight rolls just above the onset of convection in thdnvestigated by constructing a 12-mode dynamical system
presence ofstress-freeflat boundaries. It happens because(see Appendix B from the full hydrodynamical equations.
v- Vv yields zero for 2D rolls near the onset. The growing We show that the convection sets in as temporal quasiperi-
amplitude of 2D rolls is saturated by the nonlinearity odic waves for Taylor numbeT above a critical valud.,
v-V 6. In the asymptotic limit of vanishing Prandtl number although theprinciple of exchange of stabilitis valid at
(P—0), the nonlinearity- V @ in the heat equation is con- these Taylor numbers. To the best of our knowledge, the
sidered negligiblg¢1] and, therefore, dropped. The set of 2D possibility of fluid flow varying quasiperiodically in time at
rolls with their amplitude growing exponentially in time, the onset of the first instability has not been studied before
which is the exact solution of the linear system R» R, for hydrodynamical systems. Earlier observations of quasip-
then becomes an exact solution of the nonlinear hydrodyeriodic flows[21] in other fluid-dynamical systems were re-
namical system in the close vicinity of the instability onset.ported at the onset of secondary instability and not at the
Some of the 3D nonlinear solutioiis.g., squares and hexa- primary instability as is the case here. The generation of two
gong, which arise due to the nonlinear superposition of twoindependent frequencies is the result of an interaction be-
or more sets of straight rolls, also fail to saturate the instatween stationary instability angkelf-tunedwaves in the pres-
bility [18]. The limit has been, therefore, considered a com-ence of Coriolis force. For the values of Taylor number be-
plicated singular limif19] for a long time. The nonsaturation low T., the convection occurs in the form of 3D wavy rolls
of the instability is also known to occur in the case of inertialas is the case in the absence of rotation. The model also
convection[20], wherev- Vv is compensated by a pressure shows the possibility of a transition from one wavy solution
gradient. A careful 3D direct numerical simulatiddNS) of ~ to another through a narrow window of period-doubling in-
Boussinesq equations in the limit of zero Prandtl number bystability. We have also verified the stability of these standing
Thual [14] showed saturation of the instability instead of waves against traveling waves.

We present, in this paper, a theoretical study of thermal
nvection in slowly rotating Boussinesq fluids of zero
Prandtl number confined between conductstgss-fredlat
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II. HYDRODYNAMICAL SYSTEM Prandtl numberP. In the limit of zeroP, however,kq(T)
=/v2 turns out to be independent @f The critical Ray-

We consider a thin layer of a Boussinesq fluid of mﬁmteA?igh numberRo(T) = 277412 is also independent of. The

horizontal extension subjected to a uniform adverse temper ! .
ture gradientB across the fluid layer, and a rigid body rota- gngglar frequzentzzybo, at th4e onset of oscillatory convection,
tion with an angular velocitf) about the vertical axis. The 'S 9/V€N bywo=3(T—277"/8). The angular frequenay,,
fluid is assumed to have uniform values of the kinematicS real4, if the Taylor numbefT is above a fixed valudy
viscosity » and the thermal diffusivityc. The basic state is — 2/7 /8. Theprinciple of exchange of stabilitg, therefore,
the conductive state with no fluid motion in the rotating yalld at the onset of thermal convection in rotating Bouss-

frame of reference. The convective flow, in the limit of zero N€Sd fluids of zero Prandtl number, ’<T,. The oscilla-
Prandtl number, is then described by the following system ofOrY convection is possible foF>T,. However, the oscilla-

dimensionless hydrodynamic equations: tory convectioq may occur as the primary instabilityly if
Ro<R((T). This happens for the values of Taylor number
0(V?v3)=V*3+RVZ 60— VTo,03— 8-V T>T, '(.= 544.700 25-0.000 C')5)'.' The t'hermal convection
in the limit of P— 0 shows a bicritical pointafl=T, , when
X[(@-V)v=(v-V)w], (1) the stationary and the oscillatory solutions coexist.

&tw3=V2w3+ﬁ82v3+[(w-V)v3—(v-V)w3] (2) IV. THE MODEL

V20=—v,, 3 The straight rolls, just above the onset of zero-Prandtl-

number convection, are not the exact solution of the nonlin-

where v(x,y,z,t)=(vy,vp,03) is the velocity field, ear hydrodynamic system with rotation as is the case in the
6(x,y,z,t) the deviation in temperature field from steady absence of rotation. The only relevant nonlineanityVv
conduction profile, and=(w;,w,,w3) =V XV the vorticity  does not yield zero. Nevertheless, 2D rolls are not saturated
field in the fluid. In the above, length scales are made dimencjose to the instability onset. The saturation occurs only be-
sionless by the thickness of the fluid layer, time by the cause of the nonlinear interaction of 2D rolls with 3D wavy
viscous time scaled’/», and the temperature field by perturbations, which make the rolls wavy along their axis. To
(Bd) v/ k. Rayleigh numbeR= agpd*/ v« and Taylor num-  understand the nonlinear behavior close to the onset of con-
berT=402d* v? are the two-dimensionless external param-vection, we construct a consistent minimal-mode model us-
eters. The unit vectog; is directed vertically upward. We ing Galerkin techniqué24]. We expand the vertical velocity
impose periodic boundary conditions in horizontal planey, and the vertical vorticityw, in Fourier series compatible
This introduces two fundamental wave numb&ralong x  with the stress-fredooundary conditions and conducting ther-
axis andq alongy axis. The stress-free boundary conditionsmal boundary conditions. As the DNS, in absence of rota-
imply d,v1=dv,=v3=0 atz=0,1. Thermally conducting tion, showed standing patterfis4] instead of traveling pat-
horizontal boundaries yield=0 at z=0,1. The hydrody- terns, we expect similar behavior at least for small rotation
namical Eqs(1)—(3) are the same as those derived by Chanvates. Therefore, we expand the fields with real Fourier co-
drasekhar[17]. We have made the fields also nondimen-efficients. This lead to the following expansion for the verti-
sional, and have considered the case of Ferd/e have also cal velocity and the vertical vorticity for a minimum-mode
eliminated the pressure field from Navier-Stokes equationgnodel.
by taking the curl twice on the momentum equation and

using the incompressibility conditiorV(- v=0). v3(X,Y,2,t)=Wgy(t)cosk x sinz
lll. LINEAR STABILITY ANALYSIS +Wygy(t)coskex cosqy sinmz
The linear stability analysis of the Rayleigh+Bed con- +Wiq1(t)sink.x sinqy sinmrz

vection with Coriolis force has been done by Chandrasekhar
[17]. The critical Rayleigh numbeR.(T) and the critical
wave numberk (T) for stationary convection are indepen-
dent of the Prandtl numbé?. So, they remain unchanged in ~ @3(X,¥,Z,t) = {101(1)COSKcX COSTZ+ {1 ) COSQY
the limit of zero Prandtl number. They may be written as

R(T)=3[ w2 +k%(T)]? andk(T) =7\, +1,— 1/2, where

+WpAt)cosqy sin 2mz+- - (4)

+ {111(t)coskx cosqy cosmz

+ {711(t)sink x sinqy coswz

1(1 T 1 T 2 1 1/2)\1/3
Ilyzz(é—1 §+?i[<§+? 7 ]) . + {p1(t)COSqQY COS 2+ 5o t) COS KX
+ {51(t)cos K x cosqy
In the absence of rotatiok,(T=0) andR.(T=0) take their 2 _ ¢ .
standard values, which are/v2 and 27*/4, respectively. + {210(t)sin 2kex singqy+- -+ 6)

The critical Rayleigh numbeRy(T) and the critical wave
numberky(T) for the oscillatory instability in rotating fluids The solenoidal character of the velocity and the vorticity
depend, in general, on the Taylor numbBeas well as the fields yield their horizontal componentsee, Appendix A
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The thermal fluctuatior is slaved in this limit, and may be 678
computed easily from Ed3). -
The mode selection is quite systematic. As rotation
couples the vertical velocity and the vertical vorticity lin-
early, we have selected the modg; for the vertical vortic-
ity. The wavy mode;,is the most dangerous at very IdRy
and, therefore, retained. All other modes appear through the
nonlinear interaction of these vorticity modes with the criti-
cal velocity modéW,y; and higher order velocity modes. As
the vorticity field is crucial for the saturation of convection
in the limit of vanishing Prandtl number, all relevant second
harmonics are retained for the vertical vorticity. All second ggsl
harmonics in the vertical velocity field, consistent with the
selected vorticity modes, are also retained. Other higher or-
der modes may be required B&ndT are raised further. We
have not considered other convective structures like square 658, 3 5 = o
[22] or hexagons, which are nonlinear superposition of T
straight rolls because they are unlikely to saturate the insta-

lelg]y v%Lit:he o?:?:i?; L:tpr;égﬂ\lllglt'hr%pgﬁéﬁhb%ﬁge;ntsvt’%blslgs above the onset of convection. The conduction state is stable below
! y g the lowest line, which shows the critical valRg of Rayleigh num-

of straight rolls at an. angle of .580’ is also.nOt anSide.r?d a?)er as a function of Taylor numbér for q=0.4k.. The regions
we are concerned W|th.saturat|on of thg primary |nstqb|llt¥ alyenoted by SW1 and SW2 show two regimes of wavy solutions
low T(<15). Wavy stripes are more likely to occur in this separated by a thin region where period doubling is observed. Tem-

limit than structures involving straight rolls. We have re- ,orq)1y quasiperiodic waves are predicted in the region marked QP.
tained essential modes to capture the nonlinear interaction

between the stationary instability and the wavy instabilities
just at the onset of convection. Projecting the hydrodynamiglence of the critical Rayleigh numbRg on Taylor numbeil
Eqg. (1)—(3) on the selected modd&gs. (4) and (5)], we  for zero-Prandtl-number stationary convection in Boussinesq
arrive at a 12-dimensional dynamical systésee, Appendix fluids. The overstability is ruled out for Taylor numbers con-
B). The model is expected to be good in the vicinity of thesidered here. As the Rayleigh number is raised above its
convective instability at low Taylor numbers. critical valueR(T), the conductive state becomes unstable
via stationary bifurcation. However, the temporal growth of
the amplitude of the straight rolls does not stop if only 2D
problem is considered. Figure 2 shows the mechanism of
We now investigate the solutions of the dynamical systensaturation. The total energy, spatially averaged over one con-
by performing numerical integration of the model using thevective cell, grows exponentially until the 3D waves are
standard fourth order Runge-Kutta scheme. We take a valugpontaneously generated. The generation of waves is shown
for T, which fixesk.(T). We then choose a value for We by the spontaneous surge ziﬁ (the bottom left in Fig. 2
have tried with different values of the wave numigesf the  The standing wave6SW1) so generated is periodic in time
perturbations and got qualitatively similar results for 0.2for T<6.0. This is similar to what happens in the absence of
<q/k.,<0.65. The model requires more modes outside thigotation in zeroP Boussinesq fluid§15]. As Rayleigh num-
range ofg. We present here all the results fork.(T) ber is increased slowly, the exchange of energy from 2D
=0.4. Initial values for all the 12 modes are chosen ranimodes to 3D waves increases. Larger amplitude variation of
domly, and the integration is done for a fixed value of thethe wavy modes is at the cost of the energy of 2D rolls. This
Rayleigh number. We then repeat the procedure by increass a well known feature in the case of oscillatory instability.
ing the value ofR in small steps. We have also tried various The mechanism of saturation of the instability is quite differ-
initial conditions. The results of all the numerical integra- ent from that for the oscillatory instability25].
tions remain the same for identical values of all the relevant As the Rayleigh number is increased further, the solution
parameters. In the absence of rotatiohi=0), only six  changes from one wavy solution to another through a narrow
modes are excited. This model then reproduces the results wfindow of R showing period-doubling solutiongsee the
the model[15] of zeroP convection without rotation. In the middle row of Fig. 3. The first wavy solutiofSW1) has the
presence of rotation, all twelve modes are excited as thegnodesW,q; and {14, oscillating with nonzero mean, while
should in a consistent minimum-mode model. Small valueghe second wavy solutiof8W?2) has these modes oscillating
of higher order modesgsee Fig. 5 show the convergence with zero mean. In the later case the modgg and {,1
properties of the model close to the onset of convection apscillate with nonzero mean. The period of oscillation for the
the Taylor numbers considered. vorticity mode{gois double that of the velocity modé/;;
Figure 1 gives the stability boundaries of various possiblgor both the waves. The modé&/,,, oscillates subharmoni-
solutions, in the parameter spaRe-T, computed from the cally for SW1 and harmonically for SW2 with respect to the
model dynamical system. The lowest line shows the depermodeW,g,.

673

= 668

FIG. 1. Stability boundaries in the parameter sp&&& just

V. RESULTS AND DISCUSSION

026311-3



KRISHNA KUMAR, SANJAY CHAUDHURI, AND ALAKA DAS PHYSICAL REVIEW E 65 026311

0.108 30 0.8
3
0.106 20 0.6
A2 A
w w
Y VVVVVVVVVN Y
; 0.104 10 0.4
0.102
% 100 150 200 190 195 200 % 50 100 %% &5 90 95
0.02 5
0.4 4
A
ol 0.01 03
Vo2 V2
1
%o 100 150 200 fo0 195 200 0 0
. 0 50 100
Time Time
FIG. 2. The saturation mechanism for Taylor numfes6.0. FIG. 4. The saturation mechanism for Taylor numer 6.0.

The first column shows the temporal evolution of the spatially av-when the energyE) of straight rolls grows to a large but finite

eraged total energyE) (above and the energyv) (below of e, wavy perturbation@3) are excited T=10.0 andg=0.4k,).

waves along the roll axis fof =2.0 andq=0.4;. When the en-  Tpe interaction between the straight rolls and the standing waves

ergy of straight rolls grows to a large but finite value, wavy pertur-5jong the roll-axis leads to two independent frequenéisond

bations are excited. The waves thus excited stop the further growthy|ymn instead of one as is observed b+ 6.0 (see Fig. 2

of 2D rolls. The interaction between the straight rolls and standing

waves along the rolls leads to a limit cydeecond column shows the saturation mechanism of convectionTor6.0.
When the total energy of 2D rolls becomes large, wavy per-

As T is raised further, the rotation facilitates the exchangewurbations are spontaneously excited as observed Tfor

of more energy from the 2D roll modé&/;, to the vorticity  <6.0. However, the vertical vorticity due to rotation and the

mode {0, through the linear coupling. We observe an inter-self-tuned3D waves interact strongly. This interaction leads

esting behavior foll >6.0 (see Fig. 1 The conduction state to the appearance of two independent frequencies at the on-

becomes unstable via stationary instability but the final statget of primary instability. Consequently, the amplitude of

just above the onset is quasiperiodic waves in time. Figure fvaves starts modulating. Figure 5 shows the variations of
different modes with time. The amplitudes of all the modes
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FIG. 3. Phase portrait for various values of the Rayleigh number
R for T=2.0 andq=0.4k.. The first, second, and third columns FIG. 5. Time variation of various modes fof=10.0, g
show the projections of the 12-dimensional phase spacé;gn =0.4., andR=678.0 long after all transients have died out. The
—Wio1, Lo10— Wio1, andWs1,— Wi, planes, respectively. The top critical Rayleigh numbeR,(T=10.0)=677.076 8. Starting from
row (R=663.0) and the bottom rowR=668) show two different left, the top row shows temporal variation of the mod&fsy,,
wavy regimes SW1 and SW2, respectively, while the middle rowW;7;, W;1;, and Wq;,, respectively with time. The middle row
(R=664.95) shows period doubling in a narrow regime betweershows the variation of9;, {10, {111, and{,qo. The bottom row
SW1 and SW2. shows the same for the modé&g», {210, {210, and{q10-
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FIG. 6. Phase space portraits showing quasiperiodic motion for_ onlg' \Z F:ontthurt p|0t$-¥;]7.0, ?t=0.4kc, snd R=671.30 ?“fj f
T=10.0,q=0.4., and R=677.08. Starting clockwise from the 7" arious textures otthe patlern are Snown over a period o

et top, they show the projections of prase spackd,Wans, % (S SRR L CLE N i
Z101— Wio1, {210~ Wio1, andWo;,— Wiy planes, respectively. € evolutio p g

each row starting from the top row.

begin modulating at the same frequency. The Fourier transdescribes the phenomenon of thermal convection in slowly
forms of these modes show two independent frequenciesotating Boussinesq fluids of zero Prandtl number just above
The frequency of amplitude modulation is much smallerthe onset. For values of Taylor number beldw, one wavy
compared to that of waves. The sharp decrease of the amphkolution bifurcates to another via a narrow window of
tudes of higher order moddsee Fig. % confirms the fast period-doubling instability as the Rayleigh numiris in-
convergence of the expansion. The model, therefore, reprereased. FoT>T,, quasiperiodic waves are observed at the
sents accurately the scenario close to the instability onsetnset of thermal convection. This is possible in spite of the
Figure 6 shows the projections of phase space trajectories fiact that theprinciple of exchange of stabilig valid accord-
various phase planes. It clearly describes the quasiperioding to the linearized hydrodynamical system. The instability
nature of the convective flow. The trajectories are confined iris an example o$elf-tunedforward bifurcation purely due to
a 12-dimensional torus in the phase space. The quasiperiodimnlinear effects. The conductive state bifurcates directly to
behavior originates due to the nonlinear interaction amonghe quasiperiodic waves at the primary instability. The model
the 2D velocity modanN, 4, the 2D vorticity mode/1p; eX-  presented would be also useful to study an interesting possi-
cited by rotation, and the wavy modg;o. Figure 7 reveals bility of transition from a state of rest to quasiperiodic chaos
some interesting details of the time dependence of conved21,2€ close to the primary instability.
tive patterns. The complex textures of the quasiperiodic pat-
terns are shown for a period of the wavy motion, which is ACKNOWLEDGMENT
much faster than the amplitude modulation. Two halves of a
period of the wavy motion are quite asymmetric. The tex- This work is supported by grants from DST, Govern-
tures of the pattern at different times are never the same dugent of India under the project, “Pattern-forming instability
to quasiperiodicity. and interface waves.”

We now consider the stability of the standing waves
against possible traveling waves along the roll axis. This is APPENDIX A: HORIZONTAL VELOCITY AND
facilitated by adding a modé,;o(t)sinqy and all higher VORTICITY FIELDS
order modes arising due to the nonlinear coupling between ) ) _
this mode and the velocity modes. This led to six more T_he horlzon_tal components of the velocity and the vortic-
modes for the vorticity and three higher modes for the vertity fields are given by
cal velocity. The resulting model, consisting of 21 modes,
reduces to the 12-mode model on integration for Taylor num-
ber considered here. Depending upon the initial conditions
either {10 Or {g10 IS excited at the primary instability. This
shows that the standing waves are preferred at the onset. This _ }gon(t)sinqycos onz
may be connected to the fact that the limit of zBroemoves q
the nonlinearity- V 6.

We have presented in this paper a simple dynamical sys- - %gzm(t)cos Xexsinqy
tem, derived from the full hydrodynamical equations, which 4ke+q

1
v1(X,y,z,t)=— kzwml(t)sin k.x cosmz— ag’om(t)sinqy
C
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q .
+ W Eo(t)3|n chX cosqy

+ Wi11(t)

v
K2+ g2 q2

q .
- W £q14(1) |cosk x sinqy cosmz

7Kg

E+—qu111(t)

{111(1) [sinkx cosqy cosmz,

(A1)

1 1
vo(X,Y,z,t)= i {q01(t)Sink X cosmz+ TR Loodt)sin 2k X
C (9

2 .
- ?sz(t)smqycos 2z

2k, |
T M+ P 210(t)cos X x sinqy
C

C .
+ 2k o Fard Usin 2ex cosay

7q

- me(t)

cosk.x sinqy cosmz

K
k2+ 5 {1a(t)

mq
+ _QWWE( )

sink.x cosqy coswz, (A2)

Ke
+ it £114(1)

a
w1(X,Y,z,t)= i {1p1(t)sink x sinrz
C

(47%+q°) o
- Twm(t)smqy sin 27z
q(m?+ki+?)

K+ o2 Wiq4(t)

{111(t) [coskex sinqy sinrz

k2+ 2
q(m?+kZ+q?)

K2+ o2 Wiq1(1)

K.
25111(0

k2+q sink.x cosqy sinmz,

(A3)
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w2+ kg _ )
wy(X,Y,z,t)= K Wgq(t)sink x sinarz
C

2 ) )
+ ? L{o1At)sinqy sin 27z

ke(m2+k2+g?)
k2+q?

Wi1a(t)

q _ _
- W {q114(1) |coskex sinqy sinarz

ke(m2+k2+g?)

K+ o2 Wiq4(t)

7

k2+ ——— {111(t) |Sinkcx cosqy sinwz.

(A4)

APPENDIX B: THE DYNAMICAL SYSTEM

The 12-mode dynamical system reads

— Th,

a;= 72( RIE—
+[(7*—3kg—20%) 7B]azay

—2a Y p—(7*—K) 7B Jazb,

—2a f,a,bs— 61 (azb,+ 10a,bg)

—[4aBr(m?®—kE)]asbg

+27?B7(by+bg+ 10a Sbg) by

—Am?aB6rhsbg, (B1)

1
= ’)/2( R(k(2:+ qZ)_ ;g a3+ 2’}/7T2\/fb8+ a_lalbz

+ f2a1( a71b5+ 55b6) + f3a3b4+ f4a4b1

—27%adyb b+ 472 B yh,bg, (B2

-3 a3+2y772 Tbg_f5ala4

—y{Rwﬁn%—
28y
- Ta1b7 4f3a2b4—4772'yb1(b2+ b5)

—207%a8yb bg— w28’ ybsby,, (B3)

a4+ 27727]\/fb5+ f6a1a3+ f7alb8

, 1
a= WZ(RQZ_?

+f8a2b1—7rzﬂ’77b1b3, (84)
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. 1 2a
by=——by+ JTa;+asb,+ 2y B 28a,b-,

+Ba3(b2+ b5_ 5b6) + 23a4b3+ 2a71,8(4b2+ bs)

X bg+688(babs+ 10bghg), (B5)
. apB’
b,=—0q%b,— > (aja;+2bybg)
B’ 5
- Z(Zalbs_ azby) —a“obyby, (B6)
. 1 T '—
b3: - —bg_ \/_—ag_al(b2+3b5_5b6)+ B—agb4
y 2 2
+3a4b;+fobiby+ a(38—B')bsbs, (B7)

. . 166
by=—4kib,— 7a1b;—28(2a,b5—aghs) + e b,bs,

(B8)
1 ’ '
b=~ bs+2\Tay+ %@@2* bibs) 7 (31bg
+2a3b1), (Bg)
. ap’
bo=— (4K +0%)be+ — - (@13, + 2b1bg)
48+3p'
— 0 (@ibs+aghy), (B10)
by=—(4k+0%)bs+ —o—(a183+2byby)
4B+3B' 4a’—a
_ T (2a1b8_ azbl) - T b2b4 ’
(B11)
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. 1 JT 1 B—pB' ata?
a—a ! 5(3+a?)é
R 105 5 106
3 _ !
@5 s by, (B12)

where the temporal variableg’s andb;’s are defined as

au a
ay,83)=— —(Wqo1,— Wi, (8,,84)=——| Wiqq,
( 1 3) 1f2( 101 111) ( 2 4) 2\f2 11

1
—Woiz|

V2

1

- 55101,

bl=

1
(bg,bg)=——=({111,

by,ba) = —
(by,bys) -

7(£010:£200

— 1
bS_ 7 §012;

—34111),
(bg.b7)=—3(5L210.— L210)-

The coefficients in the above dynamical system are

r=(m’+ kg)_l,

a=alke, B=Ki(Ki+q?),

B'=a?B, o=kal(4ki+a?), y=(m’+ke+a?) 7L,

n=(47?+q?) "t f,=[(37*—K) B+ (7~ k)BT,
fo=y(3m2—Ki=0?), fa=a(B'—pBf,)A4,

fa=ay(3m+ki+0?), fs=2my(57°+ki+q?),

fo=pB'n(37%+2ki+29%)/8, f,=aBn(37°—q?)/2,

f8=a7/(477'2ﬁ—q2)/4, fg=(3+ az) .
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