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Quasiperiodic waves at the onset of zero-Prandtl-number convection with rotation
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We show the possibility of temporally quasiperiodic waves at the onset of thermal convection in a thin
horizontal layer of slowly rotating zero-Prandtl-number Boussinesq fluid confined between stress-free conduct-
ing boundaries. Two independent frequencies emerge due to an interaction between straight rolls and waves
along these rolls in the presence of Coriolis force, if the Taylor number is raised above a critical value.
Constructing a dynamical system for the hydrodynamical problem, the competition between the interacting
instabilities is analyzed. The forward bifurcation from the conductive state is self-tuned.
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I. INTRODUCTION

The study of thermal convection in very low-Prand
number (P5n/k!1) fluids has been motivated by theore
ical interests in the problems of astrophysics@1–4#, geophys-
ics @5#, and turbulence@2,3#, as well as its potential industria
applications in the problems of crystal growth@6,7# and heat
transport in liquid metals@8,9#. In addition, both experimen
tal and theoretical investigations of thermal convection
very low P have also contributed to our understanding of
mechanism of pattern-forming instabilities@10–16# in an ex-
tended dissipative system. The hydrodynamics, in Bou
inesq approximation@17#, is governed by two nonlinearities
The first,v•“v, describes the self-interaction of the veloci
field v and the second,v•“u, results from the interaction o
the velocity field and the deviationu from the conductive
temperature field due to convection. These two nonlineari
are responsible for various instabilities and their saturat
At the onset of thermal convection in Boussinesq fluids c
fined between the conducting boundaries the straight@two-
dimensional ~2D!# rolls appear@17#. The nonlinear term
v•“v does not saturate the temporally growing amplitude
the straight rolls just above the onset of convection in
presence ofstress-freeflat boundaries. It happens becau
v•“v yields zero for 2D rolls near the onset. The growi
amplitude of 2D rolls is saturated by the nonlinear
v•“u. In the asymptotic limit of vanishing Prandtl numb
(P→0), the nonlinearityv•“u in the heat equation is con
sidered negligible@1# and, therefore, dropped. The set of 2
rolls with their amplitude growing exponentially in time
which is the exact solution of the linear system forR.Rc ,
then becomes an exact solution of the nonlinear hydro
namical system in the close vicinity of the instability ons
Some of the 3D nonlinear solutions~e.g., squares and hexa
gons!, which arise due to the nonlinear superposition of t
or more sets of straight rolls, also fail to saturate the ins
bility @18#. The limit has been, therefore, considered a co
plicated singular limit@19# for a long time. The nonsaturatio
of the instability is also known to occur in the case of inert
convection@20#, wherev•“v is compensated by a pressu
gradient. A careful 3D direct numerical simulation~DNS! of
Boussinesq equations in the limit of zero Prandtl number
Thual @14# showed saturation of the instability instead
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indefinite temporal growth. He considered all possible mo
for the vertical vorticity compatible with stress-free boun
aries. When the growing amplitude of 2D rolls becom
large, wavy perturbations are spontaneously genera
These perturbations make rolls wavy along their axis. T
exchange of energy between the waves and the straight
leads to the saturation of convective instability. The instab
ity is self tuned@15# as they appear when the amplitude
the straight rolls grows above a large value with all bifurc
tion parameters~e.g., Rayleigh numberR, Taylor numberT,
wave numbersk and q! kept fixed. The new bifurcation is
nonlocaland forward.

We present, in this paper, a theoretical study of therm
convection in slowly rotating Boussinesq fluids of ze
Prandtl number confined between conductingstress-freeflat
boundaries. The system shows interesting nonlinear dyn
ics. The linear stability shows that theprinciple of exchange
of stability is valid for T,27p4/8. The critical Rayleigh
numberR0 and the critical wave numberk0 for the oscilla-
tory convection are independent of Taylor numberT in this
limit. The nonlinear convection for small rotation rates
investigated by constructing a 12-mode dynamical sys
~see Appendix B! from the full hydrodynamical equations
We show that the convection sets in as temporal quasip
odic waves for Taylor numberT above a critical valueTc ,
although theprinciple of exchange of stabilityis valid at
these Taylor numbers. To the best of our knowledge,
possibility of fluid flow varying quasiperiodically in time a
the onset of the first instability has not been studied bef
for hydrodynamical systems. Earlier observations of quas
eriodic flows@21# in other fluid-dynamical systems were re
ported at the onset of secondary instability and not at
primary instability as is the case here. The generation of
independent frequencies is the result of an interaction
tween stationary instability andself-tunedwaves in the pres-
ence of Coriolis force. For the values of Taylor number b
low Tc , the convection occurs in the form of 3D wavy rol
as is the case in the absence of rotation. The model
shows the possibility of a transition from one wavy soluti
to another through a narrow window of period-doubling i
stability. We have also verified the stability of these stand
waves against traveling waves.
©2002 The American Physical Society11-1



ite
er
a-

ti

g
ro
o

dy

e

y

m

e

ns

an
n

on
n

h

n-
in
as

,

ss-

er
n

dtl-
lin-
the

ted
be-
vy
To
on-
us-

r-
ta-

ion
co-
ti-
e

ity

KRISHNA KUMAR, SANJAY CHAUDHURI, AND ALAKA DAS PHYSICAL REVIEW E 65 026311
II. HYDRODYNAMICAL SYSTEM

We consider a thin layer of a Boussinesq fluid of infin
horizontal extension subjected to a uniform adverse temp
ture gradientb across the fluid layer, and a rigid body rot
tion with an angular velocityV about the vertical axis. The
fluid is assumed to have uniform values of the kinema
viscosity n and the thermal diffusivityk. The basic state is
the conductive state with no fluid motion in the rotatin
frame of reference. The convective flow, in the limit of ze
Prandtl number, is then described by the following system
dimensionless hydrodynamic equations:

] t~¹2v3!5¹4v31R¹H
2 u2AT]zv32ê3•“

3@~v•“ !v2~v•“ !v#, ~1!

] tv35¹2v31AT]zv31@~v•“ !v32~v•“ !v3# ~2!

¹2u52v3 , ~3!

where v(x,y,z,t)[(v1 ,v2 ,v3) is the velocity field,
u(x,y,z,t) the deviation in temperature field from stea
conduction profile, andv[(v1 ,v2 ,v3)5“3v the vorticity
field in the fluid. In the above, length scales are made dim
sionless by the thicknessd of the fluid layer, time by the
viscous time scaled2/n, and the temperature field b
(bd)n/k. Rayleigh numberR5agbd4/nk and Taylor num-
berT54V2d4/n2 are the two-dimensionless external para
eters. The unit vectorê3 is directed vertically upward. We
impose periodic boundary conditions in horizontal plan
This introduces two fundamental wave numbersk along x
axis andq alongy axis. The stress-free boundary conditio
imply ]zv15]zv25v350 at z50,1. Thermally conducting
horizontal boundaries yieldu50 at z50,1. The hydrody-
namical Eqs.~1!–~3! are the same as those derived by Ch
drasekhar@17#. We have made the fields also nondime
sional, and have considered the case of zeroP. We have also
eliminated the pressure field from Navier-Stokes equati
by taking the curl twice on the momentum equation a
using the incompressibility condition (“•v50).

III. LINEAR STABILITY ANALYSIS

The linear stability analysis of the Rayleigh-Be´nard con-
vection with Coriolis force has been done by Chandrasek
@17#. The critical Rayleigh numberRc(T) and the critical
wave numberkc(T) for stationary convection are indepe
dent of the Prandtl numberP. So, they remain unchanged
the limit of zero Prandtl number. They may be written
Rc(T)53@p21kc

2(T)#2 andkc(T)5pAl 11 l 221/2, where

l 1,25X14 H 1

2
1

T

p4 6F S 1

2
1

T

p4D 2

2
1

4G1/2J C1/3

.

In the absence of rotation,kc(T50) andRc(T50) take their
standard values, which arep/& and 27p4/4, respectively.
The critical Rayleigh numberR0(T) and the critical wave
numberk0(T) for the oscillatory instability in rotating fluids
depend, in general, on the Taylor numberT as well as the
02631
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Prandtl numberP. In the limit of zeroP, however,k0(T)
5p/& turns out to be independent ofT. The critical Ray-
leigh numberR0(T)527p4/2 is also independent ofT. The
angular frequencyv0 , at the onset of oscillatory convection
is given byv0

25 2
3 (T227p4/8). The angular frequencyv0 ,

is real, if the Taylor numberT is above a fixed valueT0
527p4/8. Theprinciple of exchange of stabilityis, therefore,
valid at the onset of thermal convection in rotating Bou
inesq fluids of zero Prandtl number, ifT<T0 . The oscilla-
tory convection is possible forT.T0 . However, the oscilla-
tory convection may occur as the primary instabilityonly if
R0,Rc(T). This happens for the values of Taylor numb
T.T* (5544.700 2560.000 05). The thermal convectio
in the limit of P→0 shows a bicritical point atT5T* , when
the stationary and the oscillatory solutions coexist.

IV. THE MODEL

The straight rolls, just above the onset of zero-Pran
number convection, are not the exact solution of the non
ear hydrodynamic system with rotation as is the case in
absence of rotation. The only relevant nonlinearityv•“v
does not yield zero. Nevertheless, 2D rolls are not satura
close to the instability onset. The saturation occurs only
cause of the nonlinear interaction of 2D rolls with 3D wa
perturbations, which make the rolls wavy along their axis.
understand the nonlinear behavior close to the onset of c
vection, we construct a consistent minimal-mode model
ing Galerkin technique@24#. We expand the vertical velocity
v3 and the vertical vorticityv3 in Fourier series compatible
with thestress-freeboundary conditions and conducting the
mal boundary conditions. As the DNS, in absence of ro
tion, showed standing patterns@14# instead of traveling pat-
terns, we expect similar behavior at least for small rotat
rates. Therefore, we expand the fields with real Fourier
efficients. This lead to the following expansion for the ver
cal velocity and the vertical vorticity for a minimum-mod
model.

v3~x,y,z,t !5W101~ t !coskcx sinpz

1W111~ t !coskcx cosqy sinpz

1W1̄1̄1~ t !sinkcx sinqy sinpz

1W012~ t !cosqy sin 2pz1¯ ~4!

v3~x,y,z,t !5z101~ t !coskcx cospz1z010~ t !cosqy

1z111~ t !coskcx cosqy cospz

1z 1̄1̄1~ t !sinkcx sinqy cospz

1z012~ t !cosqy cos 2pz1z200~ t !cos 2kcx

1z210~ t !cos 2kcx cosqy

1z 2̄1̄0~ t !sin 2kcx sinqy1¯ . ~5!

The solenoidal character of the velocity and the vortic
fields yield their horizontal components~see, Appendix A!.
1-2
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The thermal fluctuationu is slaved in this limit, and may be
computed easily from Eq.~3!.

The mode selection is quite systematic. As rotat
couples the vertical velocity and the vertical vorticity lin
early, we have selected the modez101 for the vertical vortic-
ity. The wavy modez010 is the most dangerous at very lowP,
and, therefore, retained. All other modes appear through
nonlinear interaction of these vorticity modes with the cr
cal velocity modeW101 and higher order velocity modes. A
the vorticity field is crucial for the saturation of convectio
in the limit of vanishing Prandtl number, all relevant seco
harmonics are retained for the vertical vorticity. All seco
harmonics in the vertical velocity field, consistent with t
selected vorticity modes, are also retained. Other higher
der modes may be required asR andT are raised further. We
have not considered other convective structures like squ
@22# or hexagons, which are nonlinear superposition
straight rolls because they are unlikely to saturate the in
bility at the onset inP→0 limit. Küppers-Lortz instability
@23#, which occurs at relatively highT and involves two sets
of straight rolls at an angle of 58°, is also not considered
we are concerned with saturation of the primary instability
low T(,15). Wavy stripes are more likely to occur in th
limit than structures involving straight rolls. We have r
tained essential modes to capture the nonlinear interac
between the stationary instability and the wavy instabilit
just at the onset of convection. Projecting the hydrodyna
Eq. ~1!–~3! on the selected modes@Eqs. ~4! and ~5!#, we
arrive at a 12-dimensional dynamical system~see, Appendix
B!. The model is expected to be good in the vicinity of t
convective instability at low Taylor numbers.

V. RESULTS AND DISCUSSION

We now investigate the solutions of the dynamical syst
by performing numerical integration of the model using t
standard fourth order Runge-Kutta scheme. We take a v
for T, which fixeskc(T). We then choose a value forq. We
have tried with different values of the wave numberq of the
perturbations and got qualitatively similar results for 0
<q/kc<0.65. The model requires more modes outside
range of q. We present here all the results forq/kc(T)
50.4. Initial values for all the 12 modes are chosen r
domly, and the integration is done for a fixed value of t
Rayleigh number. We then repeat the procedure by incr
ing the value ofR in small steps. We have also tried vario
initial conditions. The results of all the numerical integr
tions remain the same for identical values of all the relev
parameters. In the absence of rotation (T50), only six
modes are excited. This model then reproduces the resul
the model@15# of zeroP convection without rotation. In the
presence of rotation, all twelve modes are excited as t
should in a consistent minimum-mode model. Small valu
of higher order modes~see Fig. 5! show the convergenc
properties of the model close to the onset of convection
the Taylor numbers considered.

Figure 1 gives the stability boundaries of various possi
solutions, in the parameter spaceR2T, computed from the
model dynamical system. The lowest line shows the dep
02631
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dence of the critical Rayleigh numberRc on Taylor numberT
for zero-Prandtl-number stationary convection in Boussin
fluids. The overstability is ruled out for Taylor numbers co
sidered here. As the Rayleigh number is raised above
critical valueRc(T), the conductive state becomes unsta
via stationary bifurcation. However, the temporal growth
the amplitude of the straight rolls does not stop if only 2
problem is considered. Figure 2 shows the mechanism
saturation. The total energy, spatially averaged over one c
vective cell, grows exponentially until the 3D waves a
spontaneously generated. The generation of waves is sh
by the spontaneous surge inv2

2 ~the bottom left in Fig. 2!.
The standing waves~SW1! so generated is periodic in tim
for T,6.0. This is similar to what happens in the absence
rotation in zeroP Boussinesq fluids@15#. As Rayleigh num-
ber is increased slowly, the exchange of energy from
modes to 3D waves increases. Larger amplitude variatio
the wavy modes is at the cost of the energy of 2D rolls. T
is a well known feature in the case of oscillatory instabili
The mechanism of saturation of the instability is quite diffe
ent from that for the oscillatory instability@25#.

As the Rayleigh number is increased further, the solut
changes from one wavy solution to another through a nar
window of R showing period-doubling solutions~see the
middle row of Fig. 3!. The first wavy solution~SW1! has the
modesW101 and z101 oscillating with nonzero mean, while
the second wavy solution~SW2! has these modes oscillatin
with zero mean. In the later case the modesz010 and z210
oscillate with nonzero mean. The period of oscillation for t
vorticity modez010 is double that of the velocity modeW101
for both the waves. The modeW111 oscillates subharmoni
cally for SW1 and harmonically for SW2 with respect to th
modeW101.

FIG. 1. Stability boundaries in the parameter spaceR-T just
above the onset of convection. The conduction state is stable b
the lowest line, which shows the critical valueRc of Rayleigh num-
ber as a function of Taylor numberT for q50.4kc . The regions
denoted by SW1 and SW2 show two regimes of wavy solutio
separated by a thin region where period doubling is observed. T
porally quasiperiodic waves are predicted in the region marked
1-3
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As T is raised further, the rotation facilitates the exchan
of more energy from the 2D roll modeW101 to the vorticity
modez101 through the linear coupling. We observe an int
esting behavior forT.6.0 ~see Fig. 1!. The conduction state
becomes unstable via stationary instability but the final s
just above the onset is quasiperiodic waves in time. Figu

FIG. 2. The saturation mechanism for Taylor numberT,6.0.
The first column shows the temporal evolution of the spatially
eraged total energŷE& ~above! and the energŷ v2

2& ~below! of
waves along the roll axis forT52.0 andq50.4kc . When the en-
ergy of straight rolls grows to a large but finite value, wavy pert
bations are excited. The waves thus excited stop the further gro
of 2D rolls. The interaction between the straight rolls and stand
waves along the rolls leads to a limit cycle~second column!.

FIG. 3. Phase portrait for various values of the Rayleigh num
R for T52.0 andq50.4kc . The first, second, and third column
show the projections of the 12-dimensional phase space onz101

2W101 , z0102W101, andW1112W101 planes, respectively. The to
row (R5663.0) and the bottom row (R5668) show two different
wavy regimes SW1 and SW2, respectively, while the middle r
(R5664.95) shows period doubling in a narrow regime betwe
SW1 and SW2.
02631
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shows the saturation mechanism of convection forT.6.0.
When the total energy of 2D rolls becomes large, wavy p
turbations are spontaneously excited as observed foT
,6.0. However, the vertical vorticity due to rotation and t
self-tuned3D waves interact strongly. This interaction lea
to the appearance of two independent frequencies at the
set of primary instability. Consequently, the amplitude
waves starts modulating. Figure 5 shows the variations
different modes with time. The amplitudes of all the mod
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FIG. 4. The saturation mechanism for Taylor numberT.6.0.
When the energŷE& of straight rolls grows to a large but finite
value, wavy perturbationŝv2

2& are excited~T510.0 andq50.4kc!.
The interaction between the straight rolls and the standing wa
along the roll-axis leads to two independent frequencies~second
column! instead of one as is observed forT,6.0 ~see Fig. 2!.

FIG. 5. Time variation of various modes forT510.0, q
50.4kc , andR5678.0 long after all transients have died out. T
critical Rayleigh numberRc(T510.0)5677.076 8. Starting from
left, the top row shows temporal variation of the modesW101,
W1̄1̄1 , W111, and W012, respectively with time. The middle row
shows the variation ofz101, z010, z111, andz200. The bottom row
shows the same for the modesz012, z210, z 2̄1̄0 , andz110.
1-4
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begin modulating at the same frequency. The Fourier tra
forms of these modes show two independent frequenc
The frequency of amplitude modulation is much smal
compared to that of waves. The sharp decrease of the am
tudes of higher order modes~see Fig. 5! confirms the fast
convergence of the expansion. The model, therefore, re
sents accurately the scenario close to the instability on
Figure 6 shows the projections of phase space trajectorie
various phase planes. It clearly describes the quasiperi
nature of the convective flow. The trajectories are confine
a 12-dimensional torus in the phase space. The quasiper
behavior originates due to the nonlinear interaction am
the 2D velocity modeW101, the 2D vorticity modez101 ex-
cited by rotation, and the wavy modez010. Figure 7 reveals
some interesting details of the time dependence of con
tive patterns. The complex textures of the quasiperiodic p
terns are shown for a period of the wavy motion, which
much faster than the amplitude modulation. Two halves o
period of the wavy motion are quite asymmetric. The te
tures of the pattern at different times are never the same
to quasiperiodicity.

We now consider the stability of the standing wav
against possible traveling waves along the roll axis. This
facilitated by adding a modez01̄0(t)sinqy and all higher
order modes arising due to the nonlinear coupling betw
this mode and the velocity modes. This led to six mo
modes for the vorticity and three higher modes for the ve
cal velocity. The resulting model, consisting of 21 mod
reduces to the 12-mode model on integration for Taylor nu
ber considered here. Depending upon the initial conditi
eitherz010 or z01̄0 is excited at the primary instability. Thi
shows that the standing waves are preferred at the onset.
may be connected to the fact that the limit of zeroP removes
the nonlinearityv•“u.

We have presented in this paper a simple dynamical
tem, derived from the full hydrodynamical equations, whi

FIG. 6. Phase space portraits showing quasiperiodic motion
T510.0, q50.4kc , and R5677.08. Starting clockwise from th
left top, they show the projections of phase space inW1̄1̄12W101,
z1012W101, z 2̄1̄02W101, andW0122W101 planes, respectively.
02631
s-
s.
r
li-

e-
et.
in
ic

in
dic
g

c-
t-

a
-
ue

is

n
e
i-
,
-
s

his

s-

describes the phenomenon of thermal convection in slo
rotating Boussinesq fluids of zero Prandtl number just ab
the onset. For values of Taylor number belowTc , one wavy
solution bifurcates to another via a narrow window
period-doubling instability as the Rayleigh numberR is in-
creased. ForT.Tc , quasiperiodic waves are observed at t
onset of thermal convection. This is possible in spite of
fact that theprinciple of exchange of stabilityis valid accord-
ing to the linearized hydrodynamical system. The instabi
is an example ofself-tunedforward bifurcation purely due to
nonlinear effects. The conductive state bifurcates directly
the quasiperiodic waves at the primary instability. The mo
presented would be also useful to study an interesting po
bility of transition from a state of rest to quasiperiodic cha
@21,26# close to the primary instability.
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APPENDIX A: HORIZONTAL VELOCITY AND
VORTICITY FIELDS

The horizontal components of the velocity and the vort
ity fields are given by

v1~x,y,z,t !52
p

kc
W101~ t !sinkcx cospz2

1

q
z010~ t !sinqy

2
1

q
z012~ t !sinqy cos 2pz

2
q

4kc
21q2 z210~ t !cos 2kcx sinqy

or FIG. 7. Contour plots~T57.0, q50.4kc , and R5671.30 atz
50.25!. Various textures of the pattern are shown over a period o
faster time scalet0 at equal time intervals oft0/8. The sequence o
time evolution of the pattern texture is shown from left to right
each row starting from the top row.
1-5
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1
q

4kc
21q2 z 2̄1̄0~ t !sin 2kcx cosqy

1F pkc

kc
21q2 W1̄1̄1~ t !

2
q

kc
21q2 z111~ t !Gcoskcx sinqy cospz

2F pkc

kc
21q2 W111~ t !

2
q

kc
21q2 z 1̄1̄1~ t !Gsinkcx cosqy cospz,

~A1!

v2~x,y,z,t !5
1

kc
z101~ t !sinkcx cospz1

1

2kc
z200~ t !sin 2kcx

2
2p

q
W012~ t !sinqy cos 2pz

2
2kc

4kc
21q2 z 2̄1̄0~ t !cos 2kcx sinqy

1
2kc

4kc
21q2 z210~ t !sin 2kcx cosqy

2F pq

kc
21q2 W111~ t !

1
kc

kc
21q2 z 1̄1̄1~ t !Gcoskcx sinqy cospz

1F pq

kc
21q2 W1̄1̄1~ t !

1
kc

kc
21q2 z111~ t !Gsinkcx cosqy cospz, ~A2!

v1~x,y,z,t !5
p

kc
z101~ t !sinkcx sinpz

2
~4p21q2!

q
W012~ t !sinqy sin 2pz

2Fq~p21kc
21q2!

kc
21q2 W111~ t !

1
pkc

kc
21q2 z 1̄1̄1~ t !Gcoskcx sinqy sinpz

1Fq~p21kc
21q2!

kc
21q2 W1̄1̄1~ t !

1
pkc

kc
21q2 z111~ t !Gsinkcx cosqy sinpz,

~A3!
02631
v2~x,y,z,t !5
p21kc

2

kc
W101~ t !sinkcx sinpz

1
2p

q
z012~ t !sinqy sin 2pz

2Fkc~p21kc
21q2!

kc
21q2 W1̄1̄1~ t !

2
pq

kc
21q2 z111~ t !Gcoskcx sinqy sinpz

1Fkc~p21kc
21q2!

kc
21q2 W111~ t !

2
pq

kc
21q2 z 1̄1̄1~ t !Gsinkcx cosqy sinpz.

~A4!

APPENDIX B: THE DYNAMICAL SYSTEM

The 12-mode dynamical system reads

ȧ15t2S Rkc
22

1

r 3Da12p2tATb1

1@~p223kc
222q2!tb#a3a4

22a21@b2~p22kc
2!tb8#a2b2

22a21f 1a2b52d f 1~a3b7110a2b6!

2@4abt~p22kc
2!#a4b8

12p2bt~b21b5110adb6!b3

24p2abdtb7b8 , ~B1!

ȧ25g2S R~kc
21q2!2

1

g3Da312gp2ATb81a21a1b2

1 f 2a1~a21b515db6!1 f 3a3b41 f 4a4b1

22p2adgb1b714p2b8gb4b8 , ~B2!

ȧ35g2S R~kc
21q2!2

1

g3Da312gp2ATb32 f 5a1a4

2
2dg

t
a1b724 f 3a2b424p2gb1~b21b5!

220p2adgb1b62p2b8gb3b4 , ~B3!

ȧ45h2S Rq22
1

h3Da412p2hATb51 f 6a1a31 f 7a1b8

1 f 8a2b12p2b8hb1b3 , ~B4!
1-6
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ḃ152
1

t
b11ATa11a1b41

2ab

p2g
a2a422ba2b7

1ba3~b21b525b6!12ba4b312a21b~4b21b5!

3b816bd~b3b7110b6b8!, ~B5!

ḃ252q2b22
ab8

2
~a1a212b1b8!

2
b8

4
~2a1b32a3b1!2a2db4b7 , ~B6!

ḃ352
1

g
b32

AT

2
a32a1~b213b525b6!1

b82b

2
a3b4

1 3
2 a4b11 f 9b1b71a~3b2b8!b4b8 , ~B7!

ḃ4524kc
2b42 3

4 a1b122b~2a2b82a3b3!1
16d

a2 b2b7 ,

~B8!

ḃ552
1

h
b512ATa41

ab8

4
~a1a21b1b3!1

b8

4
~a1b3

12a3b1!, ~B9!

ḃ652~4kc
21q2!b61

ab8

20
~a1a212b1b8!

2
4b13b8

40
~a1b31a3b1!, ~B10!

ḃ752~4kc
21q2!b71

ab8

8
~a1a312b1b3!

2
4b13b8

4
~2a1b82a2b1!2

4a82a

2
b2b4 ,

~B11!
ica

ro

le

02631
ḃ852
1

g
b82

AT

2
a21

1

2
a1b71

b2b8

2
a2b42

a1a21

2
b1b2

1
a2a21

2
b1b52

5~31a2!d

2
b1b6

1
a~3b2b8!

4
b3b4 , ~B12!

where the temporal variablesa1’s andb1’s are defined as

~a1 ,a3!52
p

&
~W101,2W111!, ~a2 ,a4!52

p

2&
S W1̄1̄1 ,

2
1

&
W012D , b152

1

&
z101,

~b2 ,b4!52 1
2 ~z010,z200!, ~b3 ,b8!52

1

2&
~z111,

2 1
2 z 1̄1̄1!, b552 1

4 z012,

~b6 ,b7!52 1
4 ~ 1

5 z210,2z 2̄1̄0!.

The coefficients in the above dynamical system are

t5~p21kc
2!21, a5q/kc, b5kc

2/~kc
21q2!,

b85a2b, d5kcq/~4kc
21q2!, g5~p21kc

21q2!21,

h5~4p21q2!21, f 15@~3p22kc
2!b1~p22kc

2!b8#t,

f 25g~3p22kc
22q2!, f 35a~b82b f 2!/4,

f 45ag~3p21kc
21q2!, f 552pg~5p21kc

21q2!,

f 65b8h~3p212kc
212q2!/8, f 75abh~3p22q2!/2,

f 85ah~4p2b2q2!/4, f 95~31a2!d.
nd
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